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Introduction: Frobenius algebras

In the 1930s, Frobenius algebras were first prominently studied
(for representation theory).

Around 1940, Nakayama discovered important duality theories
that helped characterize Frobenius algebras and contributed to:

Number theory,

Algebraic geometry,

Combinatorics,

Homological algebra.

Recently, their correspondence to Topological Quantum Field
Theories has revived their popularity.
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Introduction: TQFTs

Topological Quantum Field Theories (TQFTs) were axiomatically
defined by Atiyah in 1988.

TQFTs combine classical field theory, special relativity, and
quantum mechanics.

Aside from physics, TQFTs’ applications include:

Topological invariants,

Knot theory,

Four-dimensional manifolds in algebraic topology,

Moduli spaces in algebraic geometry.
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Our aims

The tensor product gives a multiplicative structure on Frobenius
algebras.

Are there new, nontrivial multiplicative structures preserving
commutativity?

Our approach: twisting the tensor product.
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Vector spaces over a field k

Vector spaces consist of the following:

k-linear maps, with linearity preserved by composition,

The tensor product A⊗B,

Isomorphisms A⊗ (B⊗C) ∼= (A⊗B)⊗C and A⊗ k ∼= A ∼= k⊗A,

The trivial twisting map σ : A⊗B ∼−→ B ⊗A.

In other words, we essentially use that vector spaces form a symmetric
monoidal category.
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Cobordisms

Definition

A 2-cobordism is a closed, oriented 2-manifold linking the disjoint
unions of some number of circles.

Example

We associate cobordisms to k-linear maps between tensor powers of a
vector space A.
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Algebras

Definition

An algebra is a vector space A along with multiplication and unit as
below,

such that multiplication is associative and unital.
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Algebras: assocativity

=
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Algebras: unitality

=

=

Rohan Das (MIT PRIMES) Frobenius Algebras Mult. Structures October 13, 2024 9 / 25



Frobenius algebras

Definition

A Frobenius algebra is an algebra with a pairing as below,

which is associative and nondegenerate.

Remark

Nondegeneracy requires the existence of a copairing, drawn on the
right above.
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Frobenius algebras: associativity

=
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Frobenius algebras: nondegeneracy

=

=
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Examples of Frobenius algebras

These examples are in terms of a counit ε : A→ k; from this, we can
define a pairing that is multiplication follows by the counit.

The algebra A = k with counit ε given by multiplication,

A finite field extension A over k with any k-linear counit ε : A→ k,

The matrix algebra Matn(k) with the trace map as the counit,

For a group G, the group algebra kG of linear combinations of
group elements with counit ε : g 7→ δge,

The algebra k[t]/(t2 − 1) with counit ε : 1 7→ 1, t 7→ 0.

The algebra k[t]/t2 with counit ε : 1 7→ 0, t 7→ 1.
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The trivial twisting map

Color A red, B blue, and represent σ by the below cobordism.
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The standard tensor product

Definition

For Frobenius algebras A and B, the standard tensor product A⊗σ B
is A⊗B equipped with a unit, multiplication, and pairing as shown.
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The standard tensor product: unit

Definition

For Frobenius algebras A and B, the standard tensor product A⊗σ B
is A⊗B equipped with a unit, multiplication, and pairing as shown.
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The standard tensor product: multiplication

Definition

For Frobenius algebras A and B, the standard tensor product A⊗σ B
is A⊗B equipped with a unit, multiplication, and pairing as shown.

Rohan Das (MIT PRIMES) Frobenius Algebras Mult. Structures October 13, 2024 17 / 25



The standard tensor product: pairing

Definition

For Frobenius algebras A and B, the standard tensor product A⊗σ B
is A⊗B equipped a unit, multiplication, and pairing as shown.
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The standard tensor product

Definition

For Frobenius algebras A and B, the standard tensor product A⊗σ B
is A⊗B equipped with a unit, multiplication, and pairing as shown.

Proposition

For all Frobenius algebras A and B, A⊗σ B is a Frobenius algebra.
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Warped tensor products of Frobenius algebras

Definition

Let γ : B ⊗A→ A⊗B be a warp as shown on the left. Define A⊗γ B
as A⊗σ B with the pairing changed, as shown below on the right.
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Result

Theorem

Let A and B be Frobenius algebras, and let γ : B ⊗A→ A⊗B be a
warp.
Then A⊗γ B is a Frobenius algebra with the natural copairing if and
only if γ ◦ σ is multiplication by a central, invertible element of A⊗B.
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Thank you!

Rohan Das (MIT PRIMES) Frobenius Algebras Mult. Structures October 13, 2024 25 / 25


	References

